3/(x-3)=2/(x-3)+8/(x^2-7+12)

Simple and best practice solution for 3/(x-3)=2/(x-3)+8/(x^2-7+12) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3/(x-3)=2/(x-3)+8/(x^2-7+12) equation:


D( x )

x^2-7+12 = 0

x-3 = 0

x^2-7+12 = 0

x^2-7+12 = 0

1*x^2 = -5 // : 1

x^2 = -5

x-3 = 0

x-3 = 0

x-3 = 0 // + 3

x = 3

x in (-oo:3) U (3:+oo)

3/(x-3) = 2/(x-3)+8/(x^2-7+12) // - 2/(x-3)+8/(x^2-7+12)

3/(x-3)-(2/(x-3))-(8/(x^2-7+12)) = 0

3/(x-3)-2*(x-3)^-1-8*(x^2-7+12)^-1 = 0

3/(x-3)-2/(x-3)-8/(x^2+5) = 0

(3*(x^2+5))/((x-3)*(x^2+5))+(-2*(x^2+5))/((x-3)*(x^2+5))+(-8*(x-3))/((x-3)*(x^2+5)) = 0

3*(x^2+5)-2*(x^2+5)-8*(x-3) = 0

x^2-8*x+5+24 = 0

x^2-8*x+29 = 0

x^2-8*x+29 = 0

x^2-8*x+29 = 0

DELTA = (-8)^2-(1*4*29)

DELTA = -52

DELTA < 0

1 = 0

1/((x-3)*(x^2+5)) = 0

1/((x-3)*(x^2+5)) = 0 // * (x-3)*(x^2+5)

1 = 0

x belongs to the empty set

See similar equations:

| 5/2x^2+3x+5/2=0 | | x^2+5x+10=-2x-2 | | x^2+-9x=0 | | 9x-4=4+3x-2 | | 3(45-12)+30=0 | | 5k^2=60-2k | | Log(3x-6)=1 | | f(x)=4x^2-11x-3 | | r^2+16r-36=y | | 8x=7x-6/5 | | (2x-4)(2x+4)+12=0 | | 120-2x=43+20 | | 100+(-72)+48= | | 3g+28=25g-12 | | x^2-x-7= | | (7-3)-8= | | (7c+4)(3c-4)=0 | | 1/4x-5 | | 2m^2-6m=-3 | | (3-7i)/(2+5i) | | -16+9x=8x+18 | | 2x^2=1-8x | | x^2-2x=-3/4x | | 5y+-2-3y=8 | | x^2+18x=108 | | 2b-5=3(b+3) | | 20=5-x^2 | | -2.1q=30.03 | | 2x-26=4x+30 | | 6=2p-8 | | p+(-3)=-6 | | 2n*4=7x+6/5 |

Equations solver categories